
Running Lua Scripts on the CLR through Bytecode
Translation

Fabio Mascarenhas1∗, Roberto Ierusalimschy1

1Departamento de Inforḿatica, PUC-Rio
Rua Marqûes de S̃ao Vicente, 225 – 22453-900

Rio de Janeiro, RJ, Brasil

mascarenhas@acm.org, roberto@inf.puc-rio.br

Abstract. The .NET Common Language Runtime (CLR) aims to provide interop-
erability among code written in several different languages, but porting script-
ing languages to it, so that scripts can run natively, has been hard. This paper
presents our approach for running scripts written in Lua, a scripting language,
on the .NET CLR.
Previous approaches for running scripting languages on the CLR have focused
on extending the CLR, statically generating CLR classes from user-defined types
in the source languages. They required either language extensions or restric-
tions on the languages’ dynamic features.
Our approach, on the other hand, focused on keeping the syntax and semantics
of the original language intact, while giving the ability to manipulate CLR ob-
jects. We implemented a translator of Lua virtual machine bytecodes to CLR
bytecodes. Benchmarks show that the code our translator generates performs
better than the code generated by compilers that use the previous approaches.

Resumo.O objetivo do Common Language Runtime .NET (CLR)é permitir a
interoperabilidade entre ćodigo escrito em diversas linguagens, mas a execução
nativa de linguagens de script no CLR tem sido difı́cil. Este artigo apresenta
nossa abordagem para executar scripts escritos em Lua, uma linguagem de
script, no .NET CLR.
Abordagens anteriores para se executar linguagens de script no CLR enfati-
zaram a extens̃ao do CLR, gerando estaticamente novas classes CLR a partir
de tipos definidos naquelas linguagens. Aquelas abordagens precisavam fazer
extens̃oesàquelas linguagens, ou restringir suas caracterı́sticas din̂amicas.
Nossa abordagem, entretanto, enfatiza a conservação da sintaxe e sem̂antica
da linguagem original, enquanto dá a ela a habilidade de manipular objetos do
CLR. Ńos implementamos um tradutor de bytecodes da máquina virtual de Lua
para bytecodes do CLR. Testes mostram que o código que nosso tradutor gera
tem desempenho melhor do que o do código gerado por compiladores que usam
as abordagens anteriores.

1. Introduction

The aim of the Microsoft .NET Framework is to provide interoperability among several
different languages, through a Common Language Runtime [Meijer and Gough, 2002].

∗Supported by CAPES.

1



The .NET CLR specification is an ISO and ECMA standard [Microsoft, 2002]. Mi-
crosoft has a commercial implementation of the CLR for its Windows platform, and non-
commercial implementations already exist for other platforms [Stutz, 2002, Ximian, 2005].
Some languages already have compilers for the CLR, and compilers for other languages
are in several stages of development [Bock, 2005].

Lua [Ierusalimschy, 2003, Ierusalimschy et al., 1996] is a scripting language that
is easy to embed, small, fast, and flexible. It is interpreted and dynamically typed, has
a simple syntax, and has several reflexive facilities. Lua also has first-class functions,
lexical scoping, and coroutines. It is widely used in the development of computer games.

Scripting languages are often used for connecting components written in other
languages (“glue” code). They are also used for building prototypes, and as languages
for configuration files. The dynamic nature of these languages lets them use compo-
nents without previous type declarations and without the need for a compilation phase.
Although they lack static type checks, they perform extensive type checking at runtime
and provide detailed information in case of errors. Ousterhout argues that the combi-
nation of these features can increase developer productivity by a factor of two or more
[Ousterhout, 1998].

This paper presents an approach for running Lua scripts natively on the CLR, by
translating bytecodes of the Lua Virtual Machine to bytecodes of the Common Intermedi-
ate Language. The Common Intermediate Language, or CIL, is the underlying language
of the CLR. Our approach leaves the syntax and semantics of the Lua scripts intact, while
achieving adequate performance. The bytecode translator is called Lua2IL.

Porting scripting languages to the CLR has been hard. ActiveState has tried
to build Perl and Python compilers, but abandoned both projects [ActiveState, 2000,
Hammond, 2000]. Smallscript Inc. has been working on a Smalltalk compiler for the CLR
since 1999 [Smallscript Inc., 2000], but there was no version of it available on February
2005.

A common trend among those projects is their emphasis on extending the CLR.
They map user-defined types in the source languages to new types in the CLR, and then
generate these types during compilation. That emphasis makes porting harder, as dy-
namic creation and modification of types is a common feature of scripting languages, Lua
included. Those projects ended up extending the syntax and semantics of the languages,
or removing some of their dynamic features.

Our approach, on the other hand, emphasizes the full implementation of the fea-
tures of the original language, without impairing its ability as a consumer. Lua scripts that
go through our translator are very restricted in their ability to extend the CLR with new
types, even though they run natively on the CLR. The scripts have full access to existing
CLR types, but this access is mediated by an interface layer. This interface layer has the
capabilities of a full CLS consumer.

The Common Language Specification (CLS) is a subset of the CLR specification
that establishes a set of rules for language interoperability [Microsoft, 2002, CLI Par-
tition I Section 7.2.2]. Compilers that generate code capable of using CLS-compliant
libraries are calledCLS consumers. Compilers that can produce new libraries or extend
existing ones are calledCLS extenders. A full CLS consumer must be able to call any
CLS-compliant method or delegate, even methods with names that are keywords of the
language; to call distinct methods of a type with the same signature but from different in-
terfaces; to instantiate any CLS-compliant type, including nested types; to read and write

2



any CLS-compliant property; and access any CLS-compliant event. All of these features
are supported by the interface layer of Lua2IL, and are available to Lua scripts.

The rest of this paper is structured as follows: Section 2 describes the bytecode
translator and the interface layer. Section 3 presents some related work and performance
evaluations, and Section 4 presents some conclusions and future developments.

2. Translating Lua scripts to the CLR

Translating a Lua script to the Common Language Runtime involves several issues, the
actual translation of the bytecodes being just one of them. First there should be a way to
represent Lua types using the types in the CLR; we cover this on Section 2.1. Then there is
the implementation of the VM instructions (the translation itself), covered in Section 2.2.
Then there are the features of the Lua language that the Lua runtime environment imple-
ments: coroutines and weak tables. We cover coroutines in Section 2.3 and weak tables in
Section 2.4. Finally, Lua scripts need to manipulate other CLR objects (instantiate them,
access their fields, call their methods, and so on). Section 2.5 details the implementation
of Lua wrappers for other CLR objects.

2.1. Representing Lua types in the CLR

A naive approach to represent Lua types in the CLR would be to map Lua numbers1,
strings, booleans andnil directly to their respective CLR types (double, string, bool, and
null). Two new CLR types would represent tables (associative arrays) and functions.
The advantage is that CLR code written in other languages would work with Lua types
directly, and vice-versa.

There is a severe disadvantage, though: Lua is dynamically typed, so the code that
Lua2IL produces would have to use the lowest common denominator among CLR types,
theobjecttype. Most operations would require a type check (with theisinst instruction
of the CLR) and a type cast. The code would have to box and unbox all numbers and
booleans operate on them, wasting memory and worsening performance.

Lua2IL does not use this naive representation. Internally, the code that it generates
deals with instances of theLuaValue structure. This structure has two fields,O, of type
LuaReference, andN, of typedouble. LuaValue instances with theO field set tonull
represent Lua numbers. Subclasses ofLuaReference represent all the other Lua types.

Instances ofLuaString, which use a CLRstring internally, represent Lua strings.
Instances ofLuaTable represent tables, implementing a C# version of the algorithm that
the Lua interpreter uses. This algorithm breaks a table in an array part and a hash part, to
optimize the use of tables as arrays.

Each Lua function gets its own class, subclassed from a common ancestor, the
LuaClosure class. The classes have aCall virtual method that executes the function
(the translated bytecodes). Lua functions are first class values, so the actual functions
are instances of their respective classes. The main body of the script is also a function,
represented by a class namedMainFunction. Instantiating this class and then calling its
Call method runs the script.

Booleans and nil are a special case. There is a singleton object for each boolean
value (the singleton instances ofTrueClass andFalseClass). The same happens with
nil (the singleton instance ofNilClass).

1Lua numbers are floating point numbers with double precision.

3



Userdata are a Lua type that represents data from a host application or a library.
TheLuaWrapper class represents userdata, and instances of this class are proxies to CLR
objects. We cover this class in more detail in Section 2.5.

The representation we use does not need type casts, as there are common denom-
inators among all types (LuaValue andLuaReference). To check if a value is a number,
for example, the code just checks whether itsO field is null. If the O field is null, the
number is stored in theN field. As another example, the code to index a value just checks
if its O field is notnull, then calls theget Item method of theO field. If the value does
not support this operation, the implementation of this operation in the value’s class throws
an exception (the Lua interpreter would flag an error in this case).

2.2. Translation of the bytecodes

When Lua2IL translates a Lua script (previously compiled to Lua Virtual Machine byte-
codes), it first reads the script and builds an in-memory tree structure of it. Each function
the script defines is a node of this tree, and the body of the script is the root. Lua2IL walks
this tree, in preorder, compiling each node to a subclass ofLuaClosure. The end result
is a library containing all those subclasses.

Calls to Lua functions do not use the standard CLR parameter passing mechanism.
When Lua2IL compiles a call to a Lua function, it has no way of knowing how many
parameters there are in the function being called, nor how many values it will return
(Lua functions can return multiple values). One possible way to pass parameters to Lua
functions would be using an array, with return values collected using another array. The
downside is that two arrays must be instantiated and filled in every function call, so we
used an alternative way.

This alternative way is to have a Lua stack, an auxiliary stack parallel to the CLR
execution stack. Lua2IL uses the Lua stack for parameter passing and collecting return
values. Each function receives this stack when it is called, along with how many argu-
ments it is receiving, and returns how many return values it pushed on the stack. For
example, a functionfoo calling another functionbar with 10 and3 as arguments would
push both arguments to the stack, then callbar passing the stack and the number2 (for
two arguments). Ifbar wants to return the values3 and1, it would push them into the
stack and return the number2 (for two return values).

Lua functions also use the Lua stack to store their local variables, instead of using
CLR locals. This is required by our implementation of lexical closures. The code does not
use strict stack discipline when operating on locals, however. For example, an addition
operation of two locals gets their values directly from their stack positions, storing it in
another stack position. There is no need to push the values to the top of the stack before
operating on them.

TheLuaClosure class also defines a helper method that receives an array of ar-
guments, builds a new Lua stack, calls the function with this stack, pops the return values,
and then returns them in another array. Other CLR programs can use this helper method
as a more natural interface to Lua functions.

The Lua stack is implemented as an array ofLuaValue instances. The stack starts
small and automatically grows as needed, doubling in size each time it is filled. The stack
does never shrink, although object references are cleared as the stack unwinds.

Using an auxiliary stack mimics the way that the Lua interpreter implements the
Lua Virtual Machine. The Lua VM is register-based, but its registers are actually virtual,

4



mapped to positions in the Lua execution stack [Ierusalimschy, 2002]. Parameter passing
and return in the Lua interpreter works just as described earlier in this section. The Lua
stack also lets Lua2IL reuse the interpreter’s implementation of lexical closures.

Due to the similarity between the execution models of the Lua interpreter and of
Lua2IL, we could do, for most of the Lua VM instructions, a straightforward translation
from the original ANSI C implementation of the Lua interpreter to the Common Interme-
diate Language of the CLR. The translation of some instructions is not as straightforward,
though. The Lua interpreter implements function calls, tail calls and function returns by
creating and maintaining its own activation records for each function call. Lua2IL uses
the CLR stack to do this, letting the CLR keep track of activation records for each Lua
function call, as each Lua function call is also a CLR method call.

The implementation of the function call instruction invokes theCall method of
the callee, passing the stack and number of arguments (pushed into the stack by previ-
ous instructions). A preamble in theCall method adjusts the arguments in the stack to
the number of arguments that the function expects, then clears the stack space that the
function will use (possibly growing the stack). The implementation of tail calls is slightly
different: Lua2IL first copies the arguments to the beginning of the stack of the caller,
then invokes theCall method using the tail call instruction of the CIL. The implementa-
tion of function return copies the return values to the end of the caller’s stack space, then
unwinds the Lua stack and does a CIL method return.

The first prototype of Lua2IL translated each instruction as a call to a helper
method, like a threaded interpreter. The helper methods were implemented in C#. This
approach was slower, but easier to debug. After implementations of all the VM instruc-
tions were done and debugged, we changed Lua2IL to directly emit CIL code instead of
just calling helper methods, effectively inlining those methods. This inlining allowed a
few more optimizations. Many of the Lua VM instructions can operate on either literal
values or registers. In the threaded translator, the helper method that implemented the
instruction did the tests to see whether the operands were literals or registers. The in-
lined translator does these tests at translation time, and the CIL code that it generates is
specialized to operate either on a literal or a register.

All instructions are inlined, but a few of them are partially implemented by C#
helper methods. In these cases, the inlined portion deals with the common case, and
delegates other cases to a helper. For example, the inlined implementation of arithmetic
instructions does the arithmetic operation itself when both operands are numbers, dele-
gating to a helper method when dealing with operands of other types.

2.3. Coroutines

Lua supports full asymmetric coroutines [Moura et al., 2004]. A Lua coroutine is a first-
class value. During its execution, the coroutine can yield control back to its caller at any
time, including deep inside nested function calls. When a coroutine yields, its execution
is suspended. It can be later resumed from any point in the script, even inside other
coroutines. Returning from the main function of a coroutine also yields control back to
the caller, but the coroutine is marked as dead and can no longer be resumed. If an error
occurs during the execution of a coroutine, this error is captured and returned to the caller,
and then the coroutine is marked as dead.

Lua2IL implements coroutines on top of CLR threads, using semaphores for syn-
chronization. Each coroutine has its own Lua stack, plus a CLR thread and two binary
semaphores. The semaphores are calledresumeandyield, and are initially closed. When

5



the script creates a coroutine, the thread of the coroutine is started. The first action of this
thread is to try to decrement itsresumesemaphore, making CLR suspend it.

When another thread resumes a coroutine, it increments theresumesemaphore of
the coroutine, restarting the execution of the coroutine’s thread. Then the caller thread
decrements theyield semaphore of the coroutine, suspending itself.

When a coroutine yields back to its caller, it increments itsyield semaphore,
restarting the execution of the caller thread. Then the coroutine decrements itsresume
semaphore, suspending itself. When the coroutine returns (finishes executing), it incre-
ments itsyield semaphore, again restarting the caller thread, then the coroutine is flagged
as terminated. Any exception occurring during execution of a coroutine is trapped and
terminates the coroutine.

The downside of this implementation is the overhead caused by context switches
and synchronization, as each CLR thread is an OS thread, and swapping among them
involves a full context switch. This overhead is not present in the coroutine implementa-
tion of the Lua interpreter. However, this is the only way of implementing coroutines on
the CLR using managed code (that is, in a portable way). A native code implementation
exists that uses Windows fibers (cooperative threads), but it is not portable, it has prob-
lems interacting with the CLR garbage collector and exception handling subsystems, and
it uses undocumented API calls [Shankar, 2003].

2.4. Weak Tables

The Lua VM supports weak references throughweak tables. A weak table may have
weak keys, weak values, or both. If a weak key or value is collected then its pair is
removed from the table. The garbage collector of the Lua interpreter puts weak tables in
a list during the mark phase; in the end of this phase the collector traverses the tables and
removes all pairs with unmarked weak references.

The Lua2IL runtime implements weak tables by storing a CLR weak reference
to the key (or value) instead of the key itself. A CLR weak reference is an instance of
System.WeakReference; the runtime wraps weak keys and values with instances of this
type.

This implementation introduces overhead in every table access, unlike the imple-
mentation the interpreter uses. Besides this added overhead, the current implementation
does not remove a weak reference from the table after the object it references is collected.
The only event the CLR associates with garbage collection is object finalization, through
aFinalize method, which adds overhead to garbage collection (objects with this method
are collected differently). Implementing a notification system on top ofFinalize is pos-
sible: each object can keep a list of the tables that have weak references to them, and the
Finalize method of each object can go through this list, removing the pairs that contain
the object. Besides the lack of elegance of this solution, it also implies a performance hit
over the whole Lua2IL system, as every object would have aFinalize method, even if
the object is never put inside a weak table.

A better way would be if the CLR notified the weak reference when it became
invalid, or if it let applications register methods that would be executed after each garbage
collection cycle. Another possible mechanism would be the one present in the Java Virtual
Machine: associate a queue with each weak reference, and when the reference becomes
invalid it is added to this queue.

6



2.5. Working with CLR objects

Our approach manages to keep the syntax and semantics of the Lua language intact. This
comes with a price, though, as the scripts are isolated from the rest of the CLR; they
have no direct notion of external CLR types. But we can give them access to these types
through a layer that sits between the Lua environment and the rest of the CLR, automati-
cally translating from Lua types to CLR types and vice-versa, all at runtime.

This integration layer is a full CLS consumer. It lets lets Lua scripts manipulate
CLR objects. The scripts can get references to CLR types and use these references to
instantiate objects, then access fields of those objects and call their methods. The scripts
do al these operations with the standard Lua syntax. They can even pass Lua functions to
methods that expect delegates, to handle events with Lua code, for example.

Lua2IL represents types and objects from the CLR with theLuaWrapper class,
which has two other subclasses; one of them represents types, and is responsible for ob-
ject instantiation and access to static members, while the other represents instances, and
is responsible for access to instance members. TheLuaWrapper class and its subclasses
have methods that implement indexing (both to read and write values) and function invo-
cation. For example, an expression likeobj:foo(arg1, arg2) is translated by the Lua
parser to the equivalent expressionobj["foo"](obj, arg1, arg2). Theobj["foo"]
subexpression emits a bytecode for an indexing operation, and Lua2IL translates this byte-
code to a call to an indexing method onobj. If obj is a Lua table, this method returns the
value stored in the table under the"foo" key. If obj is an instance ofLuaWrapper, its
indexing method searches for a methodfoo in the CLR object represented byobj, using
the CLR reflection API. If the search finds the method then the indexing method returns
a proxy to it, otherwise it returnsnil.

Continuing the previous example, the compilation of the call to the value returned
by obj["foo"] emits a call (or tail call) bytecode, which Lua2IL translates as a call to
the methodCall of the proxy. The proxy’sCall method pops the arguments from the
Lua stack, converts them to the types that the CLR method requires, and then calls it. If
the method is overloaded, the proxy tries to call each of the methods, in the order they are
defined, and throws an exception if all the calls fail because of incompatible arguments.

The cost of searching for a method with the reflection API is high, so the instances
of LuaWrapper cache proxies. This cache is shared by all instances of a same type.
Proxies to overloaded methods cache the last successful method that was called; on the
next call the proxy tries this method first.

Going back to theobj["foo"] example, iffoo is a field, the indexing method of
obj findsfoo, using reflection, and returns the value offoo in the CLR object represented
by obj. The proxy caches the field (not its value), so the next access does not need a new
reflexive search. Properties are treated in a similar manner. Writing to a field, like in
obj.foo = bar, emits an indexing bytecode that sets the value at the index. This is
translated by Lua2IL to a call to an indexing method that sets the value. This method
finds thefoo field, using reflection, convertsbar to its type, and assigns to the field. The
proxy caches thefoo field, as mentioned in the previous paragraph. Writing to properties
is again treated in a similar manner.

The Lua2IL runtime automatically converts Lua functions to delegates, if a method
expects a delegate as a parameter. A script can use this to register Lua functions as event
handlers, for example. The runtime dynamically generates a new class that implements
a method with the delegate’s signature. This method dispatches to a Lua function. The

7



runtime instantiates this class with the function being converted, and creates a delegate
from this instance. The dynamic classes are generated with the Reflection.Emit API and
kept in a temporary, memory-only library.

3. Related Work
During the years 1999 and 2000, Microsoft sponsored the development of a Python com-
piler for the CLR, calledPython for .NET[Hammond, 2000]. Python for .NET traverses
the abstract syntax tree generated by the CPython interpreter, emitting Common Inter-
mediate Language code through theReflection.Emit API. The implementation has
some similarities to the implementation of Lua2IL: Python for .NET defines aPyObject

structure for its values, and aIPyType interface that define what operations can be done
on those values (the Lua2IL equivalents are theLuaValue structure andLuaReference
class, respectively).

Around 95% of the Python core is implemented, according the author. Missing
features are primitive types without a direct mapping to the CLR (arbitrary size integers,
complex numbers and ellipses), and built-in methods of Python classes, used for dynamic
extension of classes and objects. The language syntax was not modified. The development
of this compiler halted about two years ago. The last available prototype is dated April
2002, with parts of it dated April 2000.

Perl for .NET is a Perl compiler for the CLR, and was developed by ActiveState
between 1999 and 2000 [ActiveState, 2000]. The compiler works as a back-end to the
Perl interpreter, generating C# code (not CIL) that calls a Perl runtime for its operations.
There is no information about how much of the Perl language is covered by the compiler,
and the source code for it is not available. The last available prototype is dated June 2000,
and does not work with released versions of the CLR, only with betas.

JScript.NET is an extension of the JScript language (or EcmaScript) with a com-
piler for the CLR, and is part of the Microsoft .NET Software Development Kit. The
language extensions include classes and optional type declarations. The dynamic features
of JScript are still available, although interoperation with other CLR code is compromised
if the extensions are not used: delegates must be declared with the correct signature (in-
cluding type declarations), and declared inside a class. The code generated by the com-
piler uses CLR types natively, requiring type checking and casts in every operation with
dynamic typing.

S# is a dialect of Smalltalk developed by SmallScript Corporation, and S#.NET is
a S# compiler for the CLR. According to its author, the compiler and the language runtime
are ready, but still need to be integrated with the Visual Studio.NET development envi-
ronment before being released to the public. The compiler has been under development
since 1999.

IronPython is a new Python compiler for the CLR, and is being developed by Jim
Hugunin [Hugunin, 2004]. It uses its own parser, written in C#, and supports all of the
Python core. IronPython does some aggressive optimizations on its generated code, spe-
cially if some of the more dynamic features of Python are not used. Like the JScript.NET
compiler, it uses native CLR types whenever possible, but does not use type annotations,
and any Python function can be a delegate.

3.1. Performance Evaluation

Our first performance test is the execution of six scripts fromThe Great Win32 Computer
Language Shootout[Bagley, 2005], mainly involving arithmetic operations, recursion,

8



Script Description
ack Ackermann function, arguments 3 and 8
fibo Fibonacci numbers, the30th number

random Random number generation, generate 1,000,000 numbers
between 0 and 100

sieve Sieve of Eratosthenes, from 2 to 8,192, 100 runs
matrix 30× 30 matrix multiplication, 100 runs

heapsort Heap sort on an array of 100,000 random numbers

Table 1: Scripts for the first compiler performance test

0,6 0,5
0,63

0,51

1 0,95

0,63
0,5 0,53 0,6

1,34

0,971,06

1,56 1,52

2,54
2,82

7,9

4,15

7,4

3,22

0,64 0,76

0,42

1,04 1,05

24,09

N/DN/DN/D
0

2

4

6

8

10

ack fibo random sieve matrix heapsort

Ti
m

e 
(s

)

Lua Lua2IL JScript .NET Python for .NET IronPython 0.6

Figure 1: Results for the first performance test

and array accesses. The goal is to evaluate the performance of the code generated by the
compilers when running the primitive operations of the languages. A description of each
test script and the arguments of its execution is on Table 1.

We tested the Lua2IL, JScript.NET, Python for .NET and IronPython 0.6 compil-
ers. The same scripts compiled by Lua2IL were also executed by the Lua 5.0.2 interpreter.
We did not test the Perl for .NET compiler, as it did not work with the version of the CLR
we used.

The results are shown on Figure 1. The times are in seconds, and all the scripts
were run on the same machine, under the same conditions2.

Python for .NET did not compile thematrix andheapsortscripts, even though
these scripts were syntactically correct. IronPython successfully compiled theackscript,

2Pentium 2.8GHz HT, with 512Mb memory, running Windows XP Professional with version 1.1 of
the .NET Common Language Runtime. The Lua interpreter was compiled by the Microsoft 32-bit C/C++
optimizing compiler, version 13.10.3077 for 80x86, with the /O2 switch.

9



but it ran out of stack space during execution and crashed.

The Python for .NET compiler lags behind the others, as its authors halted the
development of the compiler before writing an optimizer. Next comes the JScript.NET
compiler, penalized by the inefficient code it generates for numerical operations. Binary
operations, except addition, are computed by a generic evaluator object that receives a
numeric code for the operation and both operands. These evaluator objects are created
in the heap, at each execution of the function, so heavily recursive numerical code is
memory-intensive and very demanding on the garbage-collector.

Both Lua2IL and IronPython show close results, with an advantage for Lua2IL in
numerical code, probably due to the type checks present in the code IronPython generates.
IronPython is at a slight advantage in code that uses arrays. Arrays are an optimization of
tables in Lua2IL, and the Lua2IL runtime must check, at each array access, if the index
is an integer and if it is in the bounds of the array part of the table, defaulting to use the
hash part if each of these tests fail. The Lua interpreter is the fastest overall.

The second performance test is a measuring of the time it takes to complete a
method call to a CLR object. The test was done with code generated by the Lua2IL,
JScript.NET (using late binding, with no type declarations), and IronPython compilers.
The Python for .NET compiler could not instantiate the types in the assembly used in this
test. We evaluated times for calls to six distinct methods. They vary by the number and
types of their parameters. Three of the methods have all parameter and return values of
typeInt32, and are called with zero, one, and two parameters. The other three methods
have parameters and return values of typeobject.

The results of the test are show on Figure 2, and are in microseconds. They were
collected on the same machine and under the same conditions of the first performance
test. TheLua columns show the times for calls from the Lua interpreter, using the Lu-
aInterface [Mascarenhas and Ierusalimschy, 2004] library. The other columns show the
times for calls from code generated by the respective compilers.

For this test, the code generated by JScript.NET and Lua2IL are very close, within
10% of each other. This shows that any overhead introduced by the peculiarities of the
code generated by each compiler is dwarfed by the time for the actual reflexive invocation
of the method. IronPython, on the other hand, clearly does not optimize method calls as
well as it optimizes the execution of Python code.

The higher times for the calls from the Lua interpreter are a result of the overhead
involved in passing values from the environment of the Lua interpreter to the managed
environment of the CLR. This shows the performance advantage of code running directly
under the CLR, which needs much less scaffolding.

4. Conclusions

This paper presented an approach for running scripts from Lua, a dynamically typed lan-
guage, on the Common Language Runtime. The approach woks by translating the byte-
codes of the Lua virtual machine to bytecodes of the CLR. The goal was to keep the syntax
and semantics of the language unchanged; any script that the Lua interpreter executes, as
long as it does not use library code, should be translatable to CIL code that with the same
behavior. There is also an integration layer that lets scripts freely manipulate CLR types.

Previous attempts at creating CLR compilers for scripting languages have focused
on static generation of classes, either by extending the language, in the case of JScript,

10



1,18
1,52

1,89

1,07

1,66

2,13

1,07
1,46

1,84

1,07

1,53

2,33

3,4

6,85

7,43

3,05

11

10,17

2,54

6,4

8,48

2,44

6,93

9,01

0

3

6

9

12

0 1 2 0 1 2

Int32 Parameters Object parameters

Ti
m

e 
(µ

s)

Lua2IL JScript .NET Lua IronPython

Figure 2: Times for method calls

or by restricting dynamic features, in the case of the Python for .NET compiler. Our
approach focuses on reproducing the semantics of the language and offering access to
CLR objects. We think the role of a consumer, instead of a creator, of CLR types is more
suited to scripting languages. A recent Python compiler for the CLR, IronPython, uses a
similar approach to ours, and matches some of our results.

The goal of keeping the semantics of the language was almost fulfilled, with only
weak tables having a different semantic, due to the absence of any mechanism in the CLR
that notifies when a weak reference becomes invalid.

Lua2IL does some optimizations in the generated code, like generating specialized
implementations of Lua bytecodes. The integration layer also optimizes calls to methods
of CLR objects, caching the methods that are discovered through reflection.

The performance of the code generated by Lua2IL was compared with code gen-
erated by three other compilers for dynamically typed languages: a commercial compiler
of the JScript language (developed by Microsoft), and two open source prototype im-
plementations of Python compilers. We also compared the performance with that of the
same code executed by the latest release of the Lua interpreter. The results are mixed,
with the code generated by Lua2IL performing better than the others in tests that are not
dominated by array accesses. Lua2IL, like the Lua interpreter, implements arrays as an
optimization of tables, not as a dedicated array type. Lua2IL performs well even in tests
dominated by array accesses, though, coming close to the fastest compiler.

Performance evaluation of the time taken by calls to the methods of other CLR
objects shows that the code generated by Lua2IL performs similarly to code generated by
JScript.NET, and better than the code generated by IronPython and a Lua to CLR bridge.
The overall time is dominated by reflexive invocation, on code generated by both Lua2IL

11



and JScript.NET.

For the future, we are doing a more efficient coroutine implementation that does
not depend on threads. We also plan on making the CLR garbage collector more flexible,
so it can better adapt to languages with finalization semantics different from the one used
by C#. Another plan is to investigate how to enable faster execution of scripting lan-
guages by the CLR, to bring the performance nearer the performance of statically-typed
languages.

References

ActiveState (2000). Release Information for the ActiveState Perl for .NET com-
piler. Available at http://www.activestate.com/Corporate/Initiatives/
NET/Perl release.html.

Bagley, D. (2005). The Great Computer Language Shootout. Available athttp://dada.

perl.it/shootout/.

Bock, J. (2005). .NET Languages. Available athttp://www.dotnetlanguages.net/

DNL/Resources.aspx.

Hammond, M. (2000). Python for .NET: Lessons Learned. Available
at http://www.activestate.com/Corporate/Initiatives/NET/Python for .

NET whitepaper.pdf.

Hugunin, J. (2004). IronPython: A fast Python implementation for .NET and Mono. In
PyCON 2004 International Python Conference.

Ierusalimschy, R. (2002). The Virtual Machine of Lua 5.0. InLightweight Languages
2003 Workshop. Available at http://www.inf.puc-rio.br/∼roberto/talks/
lua-ll3.pdf.

Ierusalimschy, R. (2003).Programming in Lua. Lua.org.

Ierusalimschy, R., de Figueiredo, L. H., and Celes, W. (1996). Lua — An Extensible
Extension Language.Software: Practice and Experience, 26(6):635–652.

Mascarenhas, F. and Ierusalimschy, R. (2004). LuaInterface: Scripting the .NET CLR
with Lua. Journal of Universal Computer Science, 10(7):892–908.

Meijer, E. and Gough, J. (2002). Technical Overview of the Common Language Runtime.
Technical report, Microsoft Research. Available athttp://research.microsoft.

com/∼emeijer/Papers/CLR.pdf.

Microsoft (2002). ECMA C# and Common Language Infrastructure Standards. Available
athttp://msdn.microsoft.com/net/ecma/.

Moura, A. L. d., Rodriguez, N., and Ierusalimschy, R. (2004). Coroutines in Lua.Journal
of Universal Computer Science, 10(7):910–925.

Ousterhout, J. (1998). Scripting: Higher Level Programming for the 21st Century.IEEE
Computer, 31(3):23–30.

Shankar, A. (2003). Implementing Coroutines for .NET by Wrapping the Unmanaged
Fiber API. MSDN Magazine, 18(9). Available athttp://msdn.microsoft.com/
msdnmag/issues/03/09/CoroutinesinNET/default.aspx.

Smallscript Inc. (2000). S#.NET Tech-preview Software Release. Available athttp:

//www.smallscript.com/Community/calendar home.asp.

12



Stutz, D. (2002). The Microsoft Shared Source CLI Implementation. Avail-
able at http://msdn.microsoft.com/library/en-us/Dndotnet/html/

mssharsourcecli.asp.

Ximian (2005). The Mono Project. Available athttp://www.go-mono.com/.

All of the links in these references have been verified and are working as of Febru-
ary 2005.

13


